
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

OPTIMIZED LANDING OF AUTONOMOUS UNMANNED
AERIAL VEHICLE SWARMS

by

Thomas F. Dono

June 2012

Thesis Advisor: Dr. Timothy Chung
Second Reader: Major Chad Seagren, Ph.D.

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

7–6–2012 Master’s Thesis 2010-06-01—2012-05-31

Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms

Thomas F. Dono

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

This research explores a future concept requiring the efficient and safe, landing and recovery of a swarm of unmanned aerial vehicles
(UAVs). The presented work involves the use of an overarching (centralized) airspace optimization model, formulated analytically as
a network-based model with side constraints describing a time-expanded network model of the terminal airspace in which the UAVs
navigate to one or more (possibly moving) landing zones. This model generates optimal paths in a centralized manner such that the
UAVs are properly sequenced into the landing areas. The network-based model is “grown” using agent based simulation with simple
flocking rules. The resulting solution is compared to another agent-based model which uses similar avoidance rules for the landing of
these UAVs, exploring the benefit of distributed computation and decision-making characteristic of swarming models. Relevant
measures of performance include, e.g., the total time necessary to land the swarm. Extensive simulation studies and sensitivity
analyses are conducted to demonstrate the relative effectiveness of the proposed approaches.

Unclassified Unclassified Unclassified UU 83

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

OPTIMIZED LANDING OF AUTONOMOUS UNMANNED AERIAL VEHICLE
SWARMS

Thomas F. Dono
Major, United States Marine Corps

B.S., Psychology, Virginia Tech, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS ANALYSIS

from the

NAVAL POSTGRADUATE SCHOOL
June 2012

Author: Thomas F. Dono

Approved by: Dr. Timothy Chung
Thesis Advisor

Major Chad Seagren, Ph.D.
Second Reader

Dr. Robert Dell
Chair, Department of Operations Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This research explores a future concept requiring the efficient and safe, landing and recov-
ery of a swarm of unmanned aerial vehicles (UAVs). The presented work involves the use
of an overarching (centralized) airspace optimization model, formulated analytically as a
network-based model with side constraints describing a time-expanded network model of
the terminal airspace in which the UAVs navigate to one or more (possibly moving) land-
ing zones. This model generates optimal paths in a centralized manner such that the UAVs
are properly sequenced into the landing areas. The network-based model is “grown” us-
ing agent based simulation with simple flocking rules. The resulting solution is compared
to another agent-based model which uses similar avoidance rules for the landing of these
UAVs, exploring the benefit of distributed computation and decision-making characteristic
of swarming models. Relevant measures of performance include, e.g., the total time neces-
sary to land the swarm. Extensive simulation studies and sensitivity analyses are conducted
to demonstrate the relative effectiveness of the proposed approaches.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

List of Acronyms and Abbreviations xiii

1 INTRODUCTION 1
1.1 Background . 1

1.2 Literature Review . 3

1.3 Concept of Operations . 6

1.4 Scope and Assumptions. 6

1.5 Contributions of this Thesis . 7

1.6 Organization of the Thesis. 8

2 MODEL FORMULATION 9
2.1 Scenario Description . 9

2.2 Airspace Network Description 9

2.3 Network-based Formulation . 13

2.4 Construction of the Network-based Model 15

3 MODEL EXPLORATION 17
3.1 Introduction . 17

3.2 Full Algorithm . 17

3.3 Time Slice . 20

3.4 Convex Hull . 23

3.5 Multiple Convex Hulls . 26

3.6 Agent-Based Masks Algorithm 27

3.7 Organic Masks . 29

3.8 Algorithm Comparison . 31

4 Model Comparison 43

vii

4.1 Introduction . 43

4.2 Agent-Based Model for UAV Swarms 43

4.3 Agent-based flocking model results 46

4.4 Comparison between flocking simulation and network-based optimization algorithms
49

4.5 Discussion . 52

5 Conclusion and Future Work 55
5.1 Conclusions . 55

5.2 Discussion . 56

5.3 Avenues for Future Research. 57

Initial Distribution List 63

viii

List of Figures

Figure 2.1 Benchmark Scenario Graphic . 9

Figure 2.2 Example of a network graph . 10

Figure 2.3 Node adjacencies . 11

Figure 2.4 Network representation of airspace 12

Figure 2.5 Time expansion of airspace network 12

Figure 2.6 Work flow diagram . 16

Figure 3.1 Graph of # of nodes and edges as airspace increases 19

Figure 3.2 Optimal path: full algorithm . 20

Figure 3.3 Graphical representation of time-sliced algorithm 21

Figure 3.4 Optimal path: time-sliced algorithm 23

Figure 3.5 A graphical depiction of how the convex hull of the airspace is created 24

Figure 3.6 An example of a mask . 24

Figure 3.7 Optimal path: convex hull algorithm 26

Figure 3.8 Optimal path: multiple convex hull algorithm 27

Figure 3.9 Optimal path: agent-based masks algorithm 29

Figure 3.10 Frame shots of growing organic masks 30

Figure 3.11 Optimal path: organic mask algorithm 31

Figure 3.12 Scenario One . 33

Figure 3.13 Scenario Two . 34

Figure 3.14 Scenario Three . 35

ix

Figure 3.15 Scenario Four . 36

Figure 3.16 Scenario Five . 37

Figure 3.17 Landing sequence diagram, Constraint 2.4 violation 38

Figure 3.18 Comparison of the number of nodes for each algorithm 39

Figure 3.19 Comparison of the number of edges for each algorithm 39

Figure 3.20 Comparison of memory used by each algorithm 40

Figure 3.21 Comparison of the objective function value for each algorithm . . . 40

Figure 3.22 Comparison of the total time in system (TOS) for each algorithm . 41

Figure 3.23 Comparison of the amount of time to solve each algorithm. 41

Figure 3.24 Progression of Node Cutting algorithms 42

Figure 4.1 Graphical depiction of flocking with vector addition 45

Figure 4.2 Select frames from our agent based model 47

Figure 4.3 Histograms of the simulation data 48

Figure 4.4 Comparison of all scenarios with algorithms and simulation 50

Figure 4.5 Comparison of simulation and multiple convex hull models in a large
airspace . 52

x

List of Tables

Table 3.1 Nodes & edges for various airspace dimensions 18

Table 3.2 Comparative Results from Scenario One 33

Table 3.3 Results from Scenario Two . 34

Table 3.4 Results from Scenario Three . 35

Table 3.5 Results from Scenario Four . 36

Table 3.6 Results from Scenario Five . 37

Table 4.1 Results of simulation on each scenario 48

Table 4.2 Comparison of network-based model against simulation results . . . 51

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ABM Agent Based Model

FAA Federal Aviation Administration

ISR Intelligence, Surveillance and Reconnaissance

LZ Landing Zone

LZs Landing Zones

NAS National Airspace

NPS Naval Postgraduate School

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UAVs Unmanned Aerial Vehicles

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Executive Summary

Unmanned Aerial Vehicles (UAVs) are increasingly utilized in the operational environment
today, by both our friends and our enemies. As this technology grows so does the require-
ment for increased automation of these systems, ultimately enabling one operator to control
tens of UAVs, if not more. One area of research is the automation of airspace management
in either the terminal environment or in a target area. The UAV swarm would have to be
assigned a destination and negotiate the airspace to reach its intended goal in a timely and
efficient manner while avoiding collision from other UAVs.

This thesis explores this problem utilizing two different approaches. The first approach is
through the use of a centralized control solution. This is formulated using a network-based
model that ultimately outputs control paths for the individual UAVs as they sequence for
landing. The second approach is the use of a decentralized solution. In this approach we use
an agent based model, implementing flocking heuristics to create the desired behaviors.

The network-based model is formulated as a time-expanded network model with side con-
straints. The formulation can easily become too large to solve in a traditional way. We create
several algorithms that are able to significantly cut nodes away from the network, ultimately
making the model solvable for operationally relevant airspaces. Some of these approaches
include the use of convex hulls and agent based techniques to select and cut nodes. This has
the effect of making the model tractable by today’s computational equipment and solutions
readily available to the operator.

The agent based model uses basic flocking heuristics developed by Reynolds [1]. These
heuristics utilize the following rules:

• Flock Centering: Desire for agents to move toward the center of mass of the other
agents.

• Collision Avoidance: Repulsive force causing the agents to want to be apart from
each other.

• Velocity Matching: This force causes the agents to want to move in the same direc-
tion.

• Tendency: This force draws the agents to a goal or destination.

These rules provide a basic structure for the behaviors of our UAVs as they traverse the
airspace.

These two approaches are compared to one another ultimately realizing that the agent based,

xv

decentralized approach to swarm control is almost as efficient as the centralized approach, at
fraction of the computational cost of the centralized approach. This leads to the conclusion
that Unmanned Aerial Vehicle (UAV) swarms may benefit from the use of an intelligent
combination of both a centralized control and decentralized control solution that can take
advantage of the strengths of both these methods.

Optimization models, specifically certain network formulations, can benefit from the use
of agent based or Monte Carlo simulations as a part of their formulation. We show that
it can significantly reduce computational requirements and even have the effect of making
intractable or overly difficult problems more feasible and easier to solve.

Agent based models, alternatively, can and should use optimization as a benchmark for the
development of complex behaviors and determining simulated system performance. The op-
timal solution provided by these models can give a measure of effectiveness to a simulation
modeler as they strive to understand the nature of a system.

xvi

Acknowledgements

I would first like to thank my lovely wife Kristen and my daughters Isabella and Luciana.
They have been nothing but rock of support through my graduate school education and my
military career in general. Without their love and caring I could not have done this work.

I would like to thank Dr. Timothy Chung, my thesis advisor, for giving my enough rope
to hang myself then reining me in just before I did. Through him I have been able to learn
much more than I possibly could have myself. He is an outstanding mentor and professional,
and again this thesis would not have been possible without his help and vast knowledge.

Professor Carlyle has been invaluable with his help in model formulation and programming
in GAMS. His instruction and aid has been instrumental in completing this project. Thanks
to his incredible knowledge of GAMS and programming I was able to get this model off the
ground.

I thank Dr. Ned Dimitrov for introducing me to network optimization and giving me the
inspiration to pursue this line of thought.

Finally I would like to thank Sudeep Pillia who was gracious enough to allow use his code
for this thesis, saving me hours of coding and experimentation. Because of Sudeep we were
able to get the agent based model up and running in a few hours.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:

INTRODUCTION

1.1 Background
“The fiercest serpent may be overcome by a swarm of ants.”

- Isoroku Yamamoto

UAVs are growing in popularity. Currently, UAVs are used for missions ranging from In-
telligence, Surveillance and Reconnaissance (ISR) collection to target prosecution. In the
current operational environment, at least one human operator is required to control a single
UAV during flight. As this technology grows there will eventually be tens of UAVs con-
trolled by a single human operator. These large groups of UAVs, or swarms, will be used
for missions ranging from attacking targets to the defense of high value assets. The level of
autonomy must increase appropriately in order to reduce operator workload and still allow
for mission effectiveness and completion.

In addition, current and future potential adversaries of the United States are developing
such unmanned systems capabilities for offensive attack against friendly targets. A possible
concept of operations may be to arm them with high explosive warheads and to send them
out to attack targets, similar to the kamikazes used in World War II. These “swarms” of
inexpensive unmanned vehicles have an advantage over more conventional weapons like
missiles and rockets; they can be launched from remote locations hundreds of miles away
from their intended target, then loiter at a predetermined location, search for targets, and
attack those targets. The relatively low cost of these weapons allows our enemies to procure
large numbers of them to swarm attack a single target, overwhelming its defensive systems,
and thus becoming a cheap and highly effective method to attack todays most sophisticated
and expensive warships.

The concept of swarming is not novel. The natural world uses swarming as an effective
method for taking down larger prey and enemies, as this behavior is indicative of bees,
ants, and many others [2]. Humans have used swarm tactics to attack their opponents for
some time as well. The Mongols attacks throughout Asia, the Japanese swarms of kamikaze
airplanes attacks on the Allied Fleet, and the Romans used swarms of dogs to break up
enemy formations and decrease their morale [2, 3].

“Swarms” are nominally defined differently from “teams.” A swarm is guided by a common

1

objective, but often with little or no centralized coordination. The very nature of a true
swarm is characterized by its uncoordinated, inexpensive and overwhelming traits, e.g., the
worker bee is cheap when compared to the hive or the queen. In the context of UAV swarms,
it must adhere to these three properties to be considered a true swarm [4]. Application of
the “uncoordinated” element can be reduced to distributed decision making, where the UAV
needs to “decide” without explicit coordination with the other UAVs. To be considered
inexpensive, one considers both the cost of materials and also computational complexity.
Finally, swarms seek to overwhelm the adversary with two main effects. The swarm needs
to saturate and overcome the defensive systems of the target, and it can have an intimidating
psychological effect on the enemy, inducing fear and destroying morale. War is not, after
all, a conflict between mechanical systems, but between human wills [5].

In contrast, a “team” is often explicitly characterized by its coordinated and controlled ca-
pabilities. Teams usually have a leader or some element of a command structure. In nature,
teams are seen in wolves or pods of orca whales, where smaller groups work in a coordi-
nated manner to achieve a specific goal. In the case of teams, each team member, let alone
the team leader, often plays a critical role, and the loss of certain individuals could be detri-
mental to the success of the mission. This latter architecture represents the current paradigm
for most military organizations.

Thus, the use of swarms can and should be explored by the United States and military allies
to be used against its enemies, both in offensive and defensive operational contexts [3]. The
swarming tactic should be imagined as a large force of small UAVs attacking a target, similar
to bees attacking a threat to their hive. A swarm of UAVs can flood an airspace around a
target area and attack this target near simultaneously, and overwhelmingly. The target then
has to choose between UAVs, while realizing that while it is engaging it is getting attacked
and receiving damage from other UAVs that it can not handle.

The employment of such swarms encompasses a wide range of technological and operational
challenges relevant to multiple mission areas. For example, the problem of assigning assets
to simultaneously strike a number of targets can also be related to the problem of sequencing
the efficient autonomous landing of UAVs. Consider the ongoing development of the Navy’s
X-47B UAV, which has been designed for carrier fleet operations with the ability to attack
targets by delivering munitions like conventional manned aircraft (e.g., F/A-18). In addition,
this UAV has recently demonstrated its ability to successfully land autonomously in test
environments as a precursor to carrier deck landings [6, 7] In this case the group of X-
47B aircraft would have to organize and land in accordance to the capacity and safety of
the landing platform. For example, a carrier could only accept one X-47B to land on its

2

deck every ten seconds. In the context of this thesis, the X-47B swarm would self-organize
in such a manner that would allow for optimization of this landing sequence. Given this
additional constraint to schedule individual arrivals of assets (versus simultaneous arrivals),
one can view the optimization of the strike assignment as a relaxation of this optimized
landing problem. For this reason, in this thesis, we explore the landing problem in depth,
recognizing that it can be directly translated to the strike problem. This connection will be
revisited in later sections once the general formulation has been presented.

1.2 Literature Review
The problem of UAV landing is seen in several parts during the focus of this literature review.
The first part is airspace management. We are controlling a large number of air vehicles, in
a finite airspace, around one or multiple landing zones. This is not much different from what
the Federal Aviation Administration (FAA) does on a daily basis around major airports. The
second part is simple flocking, since the swarms act in much the same way as a flock of birds
or a school of fish. Airspace management is the deconfliction of traffic in a macro sense,
where the flocking is a deconfliction in the micro sense.

Since the boom of air travel in the 1970s, researchers have been working to better optimize
the arrival process of aircraft into busy airports. For civilian air traffic systems, the problem
is a matter of fuel and cost. There has been a plethora of research done on efficiently landing
commercial air traffic around busy airports. The UAV landing scenario could be visualized
as a 15 to 20 minute time slice of these busy airports, receiving a large influx of air traffic in
a short period of time, follow by times of low activity.

Peterson, Dimitris and Amedeo [8] look at deterministic models for describing the nature
of the air traffic around Dallas Fort Worth International Airport. They use discrete time
Markov and semi-Markov chains (with discrete 15 minute intervals) to determine the ex-
pected delays, and also include six different state spaces, and an arrival process that is either
time-varying Poisson or deterministic to capture heavy and light traffic periods. Their model
proves to be useful in describing and analyzing the delays at the airport and is valid against
real data collected. This model does have its drawbacks, though, since it is computationally
expensive. If a similar method were to be used for our problem model, it would require
significant scaling to have a much smaller time step to determine baseline performance of
our system.

Bolender and Slater [9] similarly use the M/D/2 and M/M/2 queues to evaluate the per-
formance of multiple runway operations to determine if they are performing near or at their
optimal value. They determine that most airports are not running at maximum capacity and

3

that the presented models are useful in predicting arrival performance of airports looking
to expand runways. Saraf and Slater [10] developed an Eulerian circuit-based model used
for real time optimization of arrival scheduling. The model determines the best scheduling
sequence of aircraft in the current state space. Their program is able to land planes up to
25% more efficiently. Boesel [11] used an object-oriented Monte Carlo simulation model
that assesses the effect of a new FAA policy on the arrival traffic at Detroit-Wayne County
Airport. Their model uses individual objects for the aircraft, where each aircraft object must
travel along pre-designated tracks called links. The study compares the effect of new links
being used by the FAA in Detroit-Wayne Airport (DTW). They are able to evaluate the
changes made to the airport’s airspace routing and improve efficiency and capacity of the
area. These queuing type models are not considered in this thesis since the swarm is arriving
in the airspace at a deterministic time, and is in the airspace for relatively shorter periods of
time in contrast to the daily operations of airport management. These models also only ex-
plain airports and airspace capacity for scheduling of aircraft, but do not find efficient paths
in the airspace that are being navigated by the aircraft themselves.

Brooker [12] suggests that the use of 4D (4th dimension being time) modeling and schedul-
ing with the aid of software will decrease arrival times and delays greatly. The 4D modeling
and arrivals will not queue aircraft, but start scheduling their arrival hundreds of miles away,
even prior to their take-off, thereby enabling the aircraft to arrive on time, with no holding
and only small flight modifications. This work differs from the traditional priority queuing
systems and M/G/1 queues that are often used to predict performance in airport arrival sys-
tems. This approach, unlike the previous related works, can be translated into the landing
of UAV swarms, having them adjust their flight paths and profiles appropriately to enter
directly into final approach with no holding or delay. More appropriately, the delay is ab-
sorbed by the time in transit and set up to approach. This helps realize the concept of UAV
swarms by utilizing open airspace to timing and spacing vice circular holding patterns more
traditionally used in the aviation community.

The use of network models is not new to the study of this problem. This is because the use
of specialized algorithms and methods, such as Dijkstra’s shortest path and network simplex
[13], have greatly increased the efficiency of computation for these types of problems. In a
network model the problem is broken down into a series of nodes and edges that each have
their own special values and characteristics. These methods are then applied to the “graph”
to gain a solution. Dell’Olmo and Lulli [14] explore network models for this problem and
try to include what they refer to as “Free Flight Capacity.” This is not entirely true, however,
since the nodes and edges all are defined within the airspace structure as defined fixes and
routes. “Defined” is a term used by the FAA to denote a point in space that has been assigned

4

a name and significance. In this work, they use a simplified true free space model that is
both free flight and dynamic (i.e., having time as a component). This is the model that is
the primary basis for the model that we explore. The K-King model uses a chess board in
which a king can move in any direction on the board but only one space at a time. The king
is then limited by rules or constraints, for example, a deconfliction constraint, in which he
is not able to get too close to a fellow king. The kings then need to go from their current
position to a designated corner of the chessboard to land [15].

Agent-based models (ABMs) have also been used for many years and in many fields. The
use of these simulation models have given us great insight into many natural phenomena
behaviors, like flocking birds and ant organization [16]. When expanded into larger more
complex models, such models can give us insight into systems like macro-economics and
combat.

Conway [17] developed an agent-based model to mimic the air traffic control systems uti-
lized by many major airports to observe the behavior of the system. She concluded that this
was a good tool for analyzing the behaviors of air traffic in the terminal environment. This
type of modeling, along with the mathematical models mentioned above, could prove useful
in gaining intuition on the nature of our problem. Since we are developing behaviors for
deployment on actual autonomous aerial systems, agent-based models are a great tool for
creating autonomous and adaptive behaviors in these systems that benefit from decentralized
capabilities.

Agent-based models are also used to explain a behavior called flocking. This is particu-
larly interesting because it is the exact behavior that is desired in UAV swarms while in
flight. Olfati-Saber and Murray [18] describes several algorithms that have been used for
the flocking of agents in both free and restricted space, where free space reflects the absence
of obstacles in the environment. Olfati-Saber [19] later expanded their algorithms for ob-
stacle avoidance to be more efficient and to get better performance from their agents. Yu,
Jain, and Shen [20] expand on the flocking and obstacle avoidance behaviors with the use
of “fuzzy-logic” with good results, having the agents form up faster with better speed and
distance control than previous algorithms. Both approaches can be used for the flocking
of our UAV agents in the initial phase of our experiments. All of the techniques described
above are useful for en route and engagement flight profiles of swarms, since they provide
a behavior similar to swarms of locusts or schools of fish. However, in landing UAVs we
will require behavior that is substantially more rigid and sequenced to allow for effective
and safe recovery.

5

1.3 Concept of Operations
UAV swarms can and will be used in a variety of operations in the near future. Missions
including both defensive and offensive operations, specifically those that autonomous or
semi-autonomous vehicles can perform, are often limited only by the imagination and inge-
nuity of both ourselves and our enemies. Some of these types of missions could include:

• Defense of infrastructure or high value assets: UAV swarms could serve as an initial
line of defense against enemy UAV saturation attacks. In addition to providing this
active layered defense, such UAV swarms could also conduct Combat Air Patrols to
look for and target enemy UAVs as they try to penetrate our defensive airspace.

• Intelligence , Surveillance and Reconnaissance (ISR): UAV swarms could be equipped
with heterogeneous sensor payload arrays, that when combined and synchronized
could produce a more in-depth, multi-dimensional, multi-spectral picture of the battle-
space.

• Armed reconnaissance: Beyond ISR, the platform now becomes a hunter and a killer.
UAV swarms can be sent forward of the friendly line looking for targets of opportunity.
Once found, those targets can then be prosecuted by the same UAV that found the
target.

• Aerial interdiction: UAV swarms can be deployed to fly deep into enemy airspace,
overwhelming the enemy’s integrated air defense systems and/or destroying a strategic
target well inland of the fighting.

• Electronic warfare: As jammers and communication technology become more so-
phisticated, the need for strict noise jamming is becoming obsolete. Swarming UAVs
carrying more frequency-agile jammer technology could be used to disrupt and possi-
bly deny enemy communications for extended duration and spatial coverage.

1.4 Scope and Assumptions
1.4.1 Scope of this Thesis
This thesis will concentrate on addressing the research questions below:

• What is the (near-)optimal path for each UAV in the system to attack a given target or
land at a given landing zone?

• What is the trade off in terms of time and performance between centralized and de-
centralized control on routing a UAV swarm?

In order to address the former, the objective function the time required for all UAVs to reach

their destinations. An optimal path minimizes this objective function by choice of trajectory

6

through the discretized airspace, while obeying constraints on flight speed, collision avoid-
ance, and other relevant limitations. We explore various methods to improve the operational
realism of the problem under limits in computational capacity.

The latter investigation includes the development and comparison of the optimal path solu-
tion and that is based on an agent-based heuristic. The value of this evaluation is to identify
the benefits and penalties of using a centralized optimization model, whose solution is dis-
seminated to each and every UAV versus endowing the UAV swarm elements with sufficient
capability to compute their own paths in a decentralized (but sub-optimal) manner.

1.4.2 Assumptions
A number of assumptions further limit the scope of this thesis and apply to either or both of
the network-based optimization and agent-based models investigated in this thesis.

• Space and time are discrete
• UAVs are homogeneous, i.e., they possess identical capabilities and flight character-

istics
• UAVs are able to localize themselves perfectly (e.g., GPS) and their neighboring

UAVs (through onboard sensor suites)
• UAVs can communicate to each other or a ground control station without error or

delay
• UAVs travel at a constant and known airspeed
• UAVs can maneuver without constraint on turn radius
• UAVs are not in hostile setting, i.e., no evasive or counter-detection maneuvers are

required
• UAVs are not constrained by endurance limits on fuel/battery
• Goals (either strike targets or landing zones) are at known and stationary locations

prior to commencing the path optimization
• There are no major terrain obstructions that would disrupt flight paths
• There are no environmental perturbations (e.g., wind) that affect flight paths

1.5 Contributions of this Thesis
1.5.1 Theoretical
The theoretical contributions of this thesis is the formulation of a network-based optimiza-
tion model applicable for routing of a swarm of UAVs, combined with the application of
agent-based models and other techniques to select and cut nodes in the network to decrease
computational complexity. We explore several different methods for cutting nodes, includ-

7

ing an agent-based model that uses particle swarms to choose the most probable nodes that
are relevant to the network formulation. Extensive numerical studies highlight the improve-
ments and scalability achievable by use of these methods.

1.5.2 Operational
This thesis explores the trade off between centralized control and distributed control in terms
of limited computational resources. Since a swarm can actually be a group of individual
agents that can individually process given information and make decisions, are there benefits
to decentralizing the path optimization process? This research is not restricted to aerial
applications, but can also be applied to ground, surface, and subsurface swarms as well.

1.6 Organization of the Thesis
This chapter introduced the problem of optimizing the paths and sequence of UAV swarms
for autonomous landing operations, with relevance to other UAV swarm coordination mis-
sions such as strike, and also included the motivation and relevant background. Chapter 2
describes the formulation of this problem as a network-based optimization model, and also
presents the decentralized agent based model utilized for comparison. Chapter 3 develops
a variety of novel algorithms for node and arc selection and selective restrictions on the
network-based optimization model to extend the relevance of the solution space. Chapter 4
explores the agent based model and provides comparison of the network-based optimiza-
tion model and agent based results. Lastly, Chapter 5 summarizes the presented work with
recommendations for follow-on research.

8

CHAPTER 2:

MODEL FORMULATION

2.1 Scenario Description
Consider a situation, such as a saturation attack by an enemy force on a friendly asset,
in which the United States responds by deploying a counter-swarm to defend against this
swarm attack. Subsequent to the successful engagement, the friendly swarm of UAVs can
either return to base or counter strike the enemy’s positions. In both contexts, the UAVs
reform into a “flock” and are poised to land in an efficient sequence or to prosecute assigned
targets. As mentioned previously, the computational models for conducting either of these
missions are similar, with the latter multi-target strike mission representing a relaxation
of the sequenced landing and recovery operation. The model developed in this chapter
highlights this more challenging formulation, graphically illustrated in Figure 2.1 with the
collective UAV swarm preparing for recovery at three landing zones as an example.

Figure 2.1: In this scenario, the landing zones are grouped together in relative close proxim-
ity (i.e., in the upper quadrant). This scenario serves as a baseline case for possible swarm
encounters and thus provides the basis of much of the studies in this thesis.

2.2 Airspace Network Description
A network model describes a collection of nodes, denoted n ∈ N, joined together by edges,
e ∈ E, which defines a graph, G (N,E). Additionally, information relevant to the model can
be associated with nodes and edges, such as cost of traversing edges, capacity of flow along
edges, supply/demand at nodes, etc. In the context of a minimum cost flow formulation ,
the optimization problem is solved by traveling through the graph, G , and incurring cost

9

moving along edges from one or more source nodes to sink node(s). Min-cost flow models
are specific examples of a network model in which the objective is to minimize this overall
cost while maximizing the flow through the network.

1Source 3

2

4

3 6

5

7

8 Sink

Figure 2.2: Illustrative example of a canonical network model (drawn using the tikz LATEX
package). In this instance we have an undirected graph, meaning that flow can occur in both
directions along the edges. This is different from the directed graph in which flow can only
occur in one direction.

As mentioned previously, we propose a network model with side constraints to describe the
transit and landing (or targeting) of UAVs to airports (or targets). This model is similar
to the min-cost flow model in that it seeks to minimize the objective function. Given the
time-evolving nature of the problem, it is recognized that the underlying graph and corre-
sponding data (e.g., capacities or availability of edges) may depend upon time. To address
this temporal aspect, we construct a time-expanded network model [13]. Time expansion is
the “copying” of all the nodes in the network, but associating each copy with a discrete time
step from 0 to time horizon length, T . From henceforth, the proposed network model with
side constraints detailed in this thesis will be referred to as the network model or network-
based model synonymously.

The UAVs in the model start at a unique “UAV node” labeled Kk, k = {1,2, . . . ,w} where
w is the number of UAVs in the swarm. Each UAV node “holds” the supply of UAVs for
distribution into the network. In this sense the UAV node is considered a “supply” node
or “source node” in the standard terminology for network models. We choose not to use
a single source node for our model (as is typically seen in this type of problem) primarily
for bookkeeping reasons, as the post-processing of individual UAV paths is easier to extract
if associated with unique sources for each UAV without changing the underlying network
model. These UAV nodes are then connected to the UAVs’ starting positions in the airspace,
with arcs existing only for time step zero.

One UAV is allowed into a given airspace node at any given time step. This is assumed to
provide sufficient UAV deconfliction of the airspace. From its origination point, the UAV is

10

assumed to be able to transit into any of its adjacent squares, as depicted in Figure 2.3. The
UAV is assumed unable to remain in one place (e.g., fixed wing aircraft), and thus can not
hover.

Figure 2.3: The UAV can travel to any of its eight adjacent nodes in the next time step.

Movement along an edge incurs unit cost and expends one time step to complete. The UAVs
move through the network toward one or more airport nodes. The ath airport node is denoted
Aa, a = {1,2, . . . , p} where p is the number of airports. The edge in the network extending
from the airspace nodes to the airport node is similar to the UAV nodes, except that these
arcs are replicated in time and thus appear in the time-expanded network. This allows UAVs
to land at a given landing zone at any time step throughout the operation. Once a UAV
reaches an airport node, it will travel to a special aggregating or sink node denoted sink ∈N.
The sink node contains all the demand for the system. This demand is represented by a
negative number (in units of UAVs), which thereby forces the flow from the supply nodes
(i.e., UAV nodes) to the sink.

The time expansion of this whole model dictates the duplication of edges (not nodes), such
that the entire graph is duplicated for every time step with directed edges moving from nodes
in one time step to those in the subsequent one.

In Figure 2.5 we display the concept of replicating the airspace network over time. With
this representation the UAVs have to transit the space through time (in addition to the two-
dimensional space) in order to reach an airport. This allows us to use well-documented
network flow constraints by including a time index to the decision variables and edges. This
augmented state is seen and presented in the formulation below.

11

Figure 2.4: Representation of the network graph. The UAV nodes are represented as having
a supply of one UAV per node. The edges possess associated data, which is represented by
the tuple in the form of (cost, lower limit, upper limit).

Figure 2.5: Illustration of the concept of replicating the airspace network over time. We can
see that the UAVs enter the airspace at time zero in one big swarm, but that is the only place
they are depicted since they are the supply traveling thought this network. The landing zone
at the other side of the airspace, in contrast, is replicated in time, showing that the UAV can
leave the airspace at any time at a landing zone.

12

2.3 Network-based Formulation
The following formulation is the mathematical representation of the model. It displays all
the sets, indices, and data used to formulate the model using NPS format [21].

Sets

N : Set of nodes representing two-dimensional airspace

K ⊂ N : Subset of nodes corresponding to UAV locations within airspace

A⊂ N : Subset of nodes corresponding to airport (or target) locations

E : Set of edges representing spatial and temporal connections between nodes

T : Indexed set of time steps

Indexes

n, i, j ∈ N : indices of nodes

k ∈ K ⊂ N : index of nodes containing UAVs

a ∈ A⊂ N : index of nodes containing airport (or target) locations

t ∈ T : index of time step

Data

arci, j,t ∈ E : edge from node i ∈ N to node j ∈ N in time step t ∈ T

Karcsk,n,t ∈ E : initial position of UAV k ∈ K in time step t = 0

Aarcsn,a,t ∈ E : position of airport a ∈ A in time t ∈ T

sink ∈ N : sink node containing all demand [UAV]

reqa ∈ A : quantity of UAVs required to land at airport a [UAV]

Ci, j : cost to travel from node i ∈ N→ j ∈ N [time]

UAV : constant for the total UAVs in swarm [UAV]

`i, j,t : lower bound on arci, j,t [UAV]

υi, j,t : maximum capacity on arci, j,t [UAV]

υi, j,t = 1 if i, j 6= sink

υi, j,t =UAV if (i, j) = (sink,sink) or (a,sink)

13

bi,t : supply of demand at node i ∈ N at time t ∈ T [UAV]

unsati,t : unsatisfied demand at node i ∈ N at time t ∈ T [UAV]

Ga : capacity of airport a ∈ A [time step]

Decision Variables

Xi, j,t : flow on arci, j,t [UAV]

Formulation

min
X ∑

arci, j,t

Ci, jXi, j,t (2.1)

s.t. ∑
j

Xn, j,t−∑
i

Xi,n,t−1 = bn,t ∀n ∈ N (2.2)

t+Ga

∑
t=t ′

Xa,sink,t ′ ≤ 1 ∀t ∈ T, ∀a ∈ A (2.3)

∑
t

Xa,sink,t ≥ reqa ∀a ∈ A (2.4)

0≤ Xi, j,t ≤ υi, j,t , integer ∀arci, j,t (2.5)

Discussion
The objective function (Equation 2.1) expresses the total cost of all UAVs traveling though
the system. Each constraint described in Equation 2.2 is a flow balance equation, ensuring
any supply that enters a given node must exit the node with the exception of the UAV and
sink nodes. Constraints 2.3 limit the number of UAVs that can land in a given landing zone
a ∈ A for a given number of time steps t ∈ Ga. Constraints 2.4 ensure that a prerequisite
number of UAVs land at a given landing zone. Constraints 2.5 ensure that the upper bounds
of a particular edge capacity are not exceeded. Constraint 2.5 implies that all Xi, j,t are
binary with the exception of the (sink,sink, t) and (a,sink, t) edges for airports a ∈ A. This
is to allow UAVs to remain in the sink at all time steps without having to be removed. Note;
that if Constraints 2.3 are removed, then this formulation represents a min-cost network flow
problem describing the UAV simultaneous strike problem.

In this thesis we relaxed Constraints 2.5 to 0 ≤ Xi, j,t ≤ υi, j,t ∀ arci, j,t , removing the
integer requirement. This formulation does not guarantee an integer flow along any given
arc; however, in all our empirical investigations, an integer flow was consistently achieved.

14

If a fractional flow were encountered along any arc then the relaxation would have to be
removed and a mixed-integer program solution approach (e.g., branch and bound) would be
applied.

2.4 Construction of the Network-based Model
The network-based model is created using a series of software tools1. First Matlab is utilized
to create the nodes and edges. These nodes and edges are then passed to the following
comma separated value (.csv) files.

• NodesSet.csv : The name of all the nodes in the system
• EdgesSet.csv : The name of all the edges represented as Node i , Node J, Time step
• TimeSet.csv : T0→ Tt

• NodesData.csv : Contains the supply and demand info for the UAV nodes and sink
node

• EdgeData.csv : Contains all the edge data, i.e., cost, lower, and upper limits. Note
this is not time step specific

• UAVSet.csv : The set of UAVs, as distinguished from the other nodes
• APSet.csv : The set of airports, as distinguished from other nodes in the airspace
• APData.csv : Contains information for the APSet, specifically the interval, and ca-

pacity information for ensuring that UAVs do not all land at once.

This information is then read into a software package called Generalized Algebraic Mod-
eling Software (GAMS) [22]. GAMS then generates the model instance and passes it to
CPLEX [23], a commercially available solver. The solution is then read back into GAMS
and processed into another comma-separated value file. This flat file is imported into Mat-
lab, from which data relevant to the analysis is processed and graphed, as illustrated in Fig-
ure 2.6.

1We learned and explored a variety of computation tools for use in this thesis, including Python and Java
programming languages. Though Python has optimization-related packages and modeling languages such
as Coopr and Pyomo, respectively, the lack of familiarity prevented significant use of Python. On the other
hand, though Java provided an easier environment for coding the construction of the network, no suitable Java
optimization libraries, including JaCoP, were found to be applicable to the problem sizes of interest. Ultimately
we chose a combination of Matlab and GAMS.

15

Figure 2.6: Diagram of the work flow for constructing the network, including the appropriate
time expansion. We have written various Matlab scripts, which calls several function that
help to construct the network. The model is then passed (in the form of a csv file) to GAMS
and CPLEX for solving. The resulting solution in then returned to Matlab for analysis and
visualization. All the code for this model can be accessed at: http://faculty.nps.edu/thchung
(under software)

16

CHAPTER 3:

MODEL EXPLORATION

3.1 Introduction
The purpose of this chapter is to give a synopsis of the efforts taken to solve the network-
based model. We quickly discover that there is an urgent need to reduce the state space by
removal of any excess nodes and edges to make the problem more tractable. Without steps
for node reduction, current computation limits prevent solving for airspaces in excess of 60×
60 nodes. If we assume that each node represents an area that is 100 ft along its side, then
60 nodes approximately represents only one nautical mile. This is not operationally relevant
considering that most military airfields reside in Class D airspace, which is nominally 5
nm in radius. All computations described in the following are performed on a custom-built
computer2 with the following specifications:

• 3.5 GHz Intel i7 CPU, over clocked to 4.5 GHz
• 32Gb of RAM
• 640GB SSD (solid state) harddrive
• 4TB HHD
• NVIDIA GeForce GTX 580 GPU with 3 GB RAM
• 3 TB of virtual memory

At the time of this thesis, these specifications reflect a very powerful, high-end workstation
computer.

The remainder of this chapter is set forth as follows. First we explore a series of algorithms
that are designed and used to select the nodes more efficiently that are inputs to the network-
based model. Following that we compare the different algorithms according to a number
of different metrics, including each algorithm’s node reducing capability, objective func-
tion value, and computational memory. For reference, Figure 3.24 illustrates the resulting
airspace networks for the different algorithms studied in this chapter.

3.2 Full Algorithm
The Full Algorithm describes the full model of the airspace where no nodes are removed. As
mentioned we were only able to achieve results in a 60×60 patch of airspace. In Table 3.1

2Support for the purchase of this hardware and other thesis-related expenses was provided by the SSC-
Pacific Student Research Fellowship, awarded to the author after a thorough external review and selection
process.

17

we can see the approximate nodes and edges produced by certain airspace dimensions. Ap-
proximations of the nodes and edges can further be represented by the expressions below:

Time =
√

X2 +Y 2 +

(
Interval×

(
UAV s

Airports

))
Nodes≈ X×Y ×Time

Edges≈ Nodes×8 (One edge for each direction)

The following Table 3.1 and Figure 3.1 provide illustrative computation sizes as a function
of different airspace dimensions using constant values of three landing zones, nine UAVs
and a separation interval of two time steps.

Table 3.1: Number of Nodes and Edges created for various airspace dimensions. We can
see that as the airspace grows the number of nodes and edges grow exponentially, quickly
making the problem intractable.

Airspace Size Nodes Edges

30×30 6.50 ×104 4.80 ×105

90×90 1.26 ×106 1.01 ×107

180×180 9.039 ×106 7.23 ×107

300×300 4.041×107 3.23×108

The pseudocode described in Algorithm 3.1 is included for the reader’s benefit to assist
the reader’s understanding of how we choose to set up the network before it is passed to
GAMS. First, we iterate over the dimensions of the airspace, over every node in one time
step. We then create a node, its node data, and edge data for each (X ,Y) coordinate tuple.
Then we iterate over all time steps until time T to create an edge from that node to all its
adjacent nodes for each time step. This edge generation is possible even without explicitly
creating the adjacent nodes, since we pass all node information as string data types into
GAMS. Figure 3.24(a) also shows how the network includes the full airspace, on which any
optimization problem requires significant computation resources.

18

(a) (b)

Figure 3.1: Graph of Nodes as airspace is increased. We can see from these graphs that there
is a definite relationship between the the size of the airspace and the (a) number of nodes
and (b) number of edges.

Algorithm 3.1 Generating full airspace network
X = maximum x component of the Airspace
Y = maximum y component of the Airspace
MaxTime = ||X ,Y ||+ 2×#UAV

#Airports × landingInterval

for all i = 1→ X do
for all j = 1→ Y do

Create Nodei, j

Create EdgeDatai, j

for all t = startTime→ endTime do
if i+1 & j then

Create EdgeNodei, j,Nodei+1, j,t

end if
{ Use an if statement to create an edge in each direction}
{(i+1,j),(1+1.j+1),(i,j+1),(i-1,j+1),(i-1,j),(i-1,j-1),(i,j-1),(i+1,j-1)}

end for
end for

end for

Figure 3.2 illustrates the UAV paths through the airspace in respect to time. The x and y axes
represent the physical airspace, whereas the z axis represents time steps. The UAV paths are
represented by the different color lines and points. There is a red vertical line that represents

19

the (stationary) landing zone locations. For this illustrative example, the northeast corner
of the airspace is considered the “sink” for all UAVs. We can see from the figure that all
the UAVs flow into the landing zones, and then from there into the sink, remaining in the
sink thereafter. We choose to use a 30× 30 representation for this example for simplicity,
although more expansive and relevant airspace dimensions will be covered in the sequel.

Figure 3.2: Optimal Path of UAVs in 30×30 Airspace using Full Algorithm

3.3 Time Slice
Our first attempt to reduce the number of nodes to make the problem more tractable is to
eliminate nodes based on when they could be encountered by any UAV, i.e., the reachable
set as a function of time. Logically there is no reason to have a node if there is no UAV that
could possibly enter that node given the amount of time passed. In Figure 3.1 we can see
that we eliminate a significant number of nodes in a 60×60 airspace by using this reachable
node set notion, reducing from 356430 to 97230 nodes. In Figure 3.4, we can see the optimal
path of each UAV displayed over time in this reduced airspace.

In this approach we iterate over the (X ,Y) pairing as done previously. The key difference
is as we iterate over the time steps we change the starting time step and ending time step.
For this we do simple vector math to determine when a UAV could possibly encounter a
node. To perform this calculation, first we determine the center of the UAV swarm. We then

20

determine the distance from that centroid location to the farthest UAV in the swarm. This
creates a circle around the UAV start positions, such as in Figure 3.3. All points in this circle
receive a start time of t = 1. This area is where all the UAV start positions reside and where
they must be at time step one. We then start to restrict the start time based on the Euclidian
distance from the edge of the starting circle to the node.

We then need to give the UAVs enough time to navigate away from the node to the landing
zone. Realizing that multiple UAVs could transit over this node at different times we need to
provide a sufficient time window for this to happen. This is accomplished by adding to the
start time an appropriate length of time, computed as follows: the number of UAVs that are
headed to a particular airport (e.g., in the uniform allocation case, # UAVs

Airports , multiplied by
the specified time interval, because it is reasonable to expect the UAVs to hold or posture to
meet their interval and landing times. This assumption accounts for the time needed to safely
transit. A factor of two is included to provide a buffer, representing an increase in the number
of choices of nodes for each UAV throughout the duration of the transits. Modifications to
the previous pseudocode are shown in Algorithm 3.2, reflecting the inclusion of nodes to the
network only if reachable by any UAV within a given time window.

(a) Start Time (b) End Time

Figure 3.3: Start time and End time determinations for time slice approach. In (a) we see a
top down representation of how we determine the first time step, where each node inside the
the circle is to be included in time step t = 1. In (b) we see how the time slice cuts nodes
along one axis direction in relation to time.

21

Algorithm 3.2 Generating time-sliced airspace network
Centroid = Center location of UAV swarm
distance = Distance from farthest UAV from center of Swarm
ij = (i,j) vector
X = maximum x component of the Airspace
Y = maximum y component of the Airspace
MaxTime = ||X ,Y ||+ 1.5×#UAV

#Airports × landingInterval

{ this is assuming a worst case example}
for all i = 1→ X do

for all j = 1→ Y do
Create Nodei, j

Create EdgeDatai, j

if ||i j−Centroid|| ≤ distance then
startTime = 1

else
startTime = ||i j−Centroid||−distance

end if
endTime = min(MaxTime, i jNorm+ 2×#UAV

#Airports × landingInterval

for all t = startTime→ endTime do
if i+1 & j then

Create EdgeNodei, j,Nodei+1, j,t

end if
{ Use an if statement to create an edge in each direction}
{(i+1,j),(1+1.j+1),(i,j+1),(i-1,j+1),(i-1,j),(i-1,j-1),(i,j-1),(i+1,j-1)}

end for
end for

end for

In Figure 3.4 and 3.2, we can see that the UAVs are using a large portion of the airspace
initially at the early stages of their transits to conservatively ensure their spacing and interval,
well before they approach the landing zone. In some cases the last UAV to land executes
several sharp “S” turns to prepare itself for landing in sequence.

22

Figure 3.4: Optimal Path of UAVs in 30× 30 Airspace using Time-sliced algorithm. We can
see that the UAVs start to spread out quickly as they set up for landing at the appropriate
interval.

3.4 Convex Hull
In an effort to continue to reduce the number of nodes, we now present the use of the convex
hull of the airport locations and the starting positions of the UAVs. From [24, 25], a convex
hull is a polygon in which all points are either inside or on the line of the polygon. If a
line segment is drawn between any two points in this polygon, then all points on that line
segment must lie within the polygon as well. The function used to determine a convex hull
of the points has a computational complexity of O(n logn) [25]. Using this definition we
place a square area around the landing zone to define a local region of responsibility for
each airport, and created a convex hull from the outermost points of all the UAVs’ starting
locations and the landing zone square regions. This creates an airspace representation that,
for our baseline scenario, looks like Figure 3.5. This technique does have its limitations,
however; for example, if the landing zones were located at the far corners of the airspace,
then we gain little, since we lose the advantage of eliminating all the edges from either
side of the swath seen in the baseline scenario. This limitation highlights the fact that such
network reduction approaches will likely depend highly on the specifics of the scenario (the
effects of which are investigated later in this chapter). After the creation of the convex

23

hull, the resulting airspace is stored in a data structure we term a mask, which is a simple
boolean matrix of ones and zeros. Figure 3.6 shows a simple example of a mask for a 10×10
airspace. A 1 entry indicates that the node is to be included in the network model, 0 indicates
otherwise.

(a) UAV and airport locations (b) Resultant convex hull

Figure 3.5: A graphical depiction of how the convex hull of the airspace is created. (a)
positions of UAVs denoted by and ”x” and landing zones depicted as squares. (b) The
resulting polygon producing the convex hull of the airspace.

1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0

Figure 3.6: An example of a mask. 1 indicates that the node is included in the computation,
a 0 indicates that the node is not included.

The significant difference between this technique and that described by Algorithm 3.2 is that

24

we are cutting nodes on either side of airspace. In this instance we add a logical check to
see if a particular node is in the convex hull. This check is accomplished by querying the
resultant mask created by the convex hull. If that (X ,Y) pair in the mask is a 1, we include
it in the node list and create edges in the same manner discussed previously, as outlined in
Algorithm 3.3 and depicted in Figure 3.24(c).

Algorithm 3.3 Generating the airspace network using the convex hull approach
vertices = blank Array
for all a = 1→ #Airports do

for all i = 1→ 4 do
vertices = Array; Corners of Airport Polygon

end for;
end for;
vertices = vertices + UAV Positions
CH = convex hull of (vertices)
{run earlier time slice algorithm but add a logical check } {to determine if the node and
its adjacencies are infact in the convex hull}
for all X and Y pairs do

if (i, j) ∈CH then
Create nodes
if (i+1 & j) ∈CH then

Create EdgeNodei, j,Nodei+1, j,t

end if
{ Use an if statement to create an edge in each direction}
{(i+1,j),(1+1.j+1),(i,j+1),(i-1,j+1),(i-1,j),(i-1,j-1),(i,j-1),(i+1,j-1)}

end if
end for

Figure 3.7 shows the resultant path of the UAV to the convex hull algorithm. We can see
that the UAVs still are using the initial portion of the airspace to gain position and interval;
however, the paths comprise a number of smaller “S” turns (i.e., back and forth holding
maneuvers) until the airspace starts to open up, after which the UAVs start to make larger
turns and timing corrections. This is the result of the decrease in node availability on the
sides of the airspace that have been removed before the network is sent to the optimization
software.

25

Figure 3.7: Optimal path of UAVs in 60×60 airspace using Convex Hull. The UAVs start
to spread out early in the airspace at they position for landing

3.5 Multiple Convex Hulls
This technique is the similar to the convex hull construction discussed previously (c.f. Al-
gorithm 3.3) but in this multiple convex hull approach, such a convex hull is constructed for
each airport individually. The union of the resulting sets of nodes is then taken to represent
the airspace network (see Figure 3.24(d)). We then utilize the time slicing algorithm to fur-
ther cut nodes. This approach provides a significant improvement on the previous attempts
since it is able to remove the nodes between the airways to the airports as well at on the
sides, and is summarized in Algorithm 3.4.

Figure 3.8 depicts the resultant paths produced from the multiple convex hull algorithm. We
see that the paths utilize the entire airspace. The UAVs start to maneuver to achieve their
desired intervals and positions very early, again using those small “S” turns. Of interest
is that there are surprisingly few 180◦ turns. These paths actually follow a realistic flight
dynamic, even though such constraints on the dynamics are not explicitly included in this
optimization model. Future studies may examine the impact of incorporating detailed flight
dynamics, such as Dubin’s vehicle models or other bounded motion models.

26

Algorithm 3.4 Generating airspace network using multiple convex hulls approach
for all a = 1→ #Airports do

vertices = Blank Array
for all i = 1→ 4 do

vertices = Array; Corners of Airport Polygon
vertices = vertices + UAV Positions
AirportCH = convex hull of (vertices)
CH = CH ∪AirportCH

end for;
end for; {run earlier time slice algorithm but add}
if (i, j) ∈CH then

Create nodes and edges
end if

Figure 3.8: Optimal path of UAVs in 60×60 airspace using Multiple Convex Hulls. We can
see the the path deviations and correction are small. This is because the UAVs are starting
to work into an interval early while they still have enough space to maneuver.

3.6 Agent-Based Masks Algorithm
In the agent-based mask presented in this section, we use a combination of agent-based sim-
ulation and the convex hull technique discussed previously. In this instance we randomly
initialize a large number of agents in the vicinity of the starting location of the UAVs. We

27

then randomly assign each agent a landing zone to “fly” to. The agents are given simple
rules that they follow to move toward their assigned landing zones with some random noise
to provide dispersion and a wider path. Over the course of Monte Carlo simulation runs,
we then track the visited airspace that the agents occupied in each time step and created a
convex hull for that occupied airspace. This procedure gives us natural time slicing through-
out the network, while still providing enough space for the UAVs to move about without
significant deconfliction issues. Algorithm 3.5 describes the methodology for constructing
the network using this agent-based approach, and Figure 3.24(e) graphically illustrates the
resulting network.

Algorithm 3.5 Generating airspace network using Agent-Based Masks approach
Time = theoretical Maximum Time
Agents = Array, UAV locations + randomly generated Agents around UAV start Position
Assignments = randomly assign each agent a landing zone
for all t ¡= Time do

for all a = 1→ #Agents do
goalIJ = Agentsa assigned landing zone location
continue = true
Coeff = log10(T)/4 {controls variance on random noise created around movement
vector, as Agents get closer to assigned landing zone variance increases }
drive = goalIJ−Agentsa { Agents Movement vector toward the assigned Airport}
if drive == 0 then

drive = (0,0) { this is so we don’t divide by 0}
else

drive = ||drive||
end if
Agentsa = Round(Agentsa +drive+Coe f f ∗RandomNormal(0,1))
{Standard Normal distribution provides noise for agent movement}

end for
CH = convhull(Agents)
Masks(T).map = MASK(CH)
Masks(1).map = Masks(1).map∪Masks(T).map

end for

Figure 3.9 depicts the resultant paths produced from the agent-based masks algorithm. This
plot is very similar to the convex hull plot, as the UAVs use much of the airspace initially,
with frequent but small course corrections, but spread out more as more airspace becomes
available.

28

Figure 3.9: Optimal path of UAVs in 60×60 airspace using the agent-based masks approach.

3.7 Organic Masks
This approach is a culmination of our previous explorations. In this organic mask algorithm
we use the same agent-based model that was developed for the mask algorithm above, com-
bined with the multiple convex hull algorithm, by keeping track of the individual groups of
UAVs that are traveling to their assigned landing zone. In Figure 3.24(f) we can see that
the airspace qualitatively appears similar to the result of the multiple convex hull approach,
looking like a claw or rake. In this method, we also remove a considerable number of nodes,
by encapsulating viable routes (while eliminating unlikely ones) that the UAVs follow as
they travel along the network.

The organic mask effectively “grows” the network, based on agent movements flowing
through the network. In this approach we again assign the agents a landing zone as done
in the previously described agent-based masks approach. As we progress in time we apply
a movement vector which forces the agents to move toward their respective landing zones.
We then add random normal noise to this vector. All the agents traveling to a particular
landing zone are considered a separate set or flock of UAVs, such that for each time step,
we construct the convex hull of each of these sets and create our mask. Figure 3.10 depicts
the progression of the mask construction through time, with the pseudocode described in

29

Algorithm 3.6.

(a) t = 0 (b) t = 1 (c) t = 20 (d) t = 40

Figure 3.10: Organic Masks algorithm: convex hull of agent sets as they progress though
the airspace. Each frame represents an individual mask in a particular time step. We can see
how the nodes are selected at the agents move through the airspace.

Algorithm 3.6 Generating airspace network using organic masks approach
Time = theoretical Maximum Time
Agents = Array, UAV locations + randomly generated Agents around UAV start Position
Mask(T).map = empty mask
Assignments = randomly assign each agent a landing zone
for all t ¡= Time do

for all a = 1→ #Agents do
******Move all agents as in Masks Algorithm*****

end for
for all k = 1:size(Airports) do

index = set of all agents assigned to Airportk
CH = convexhull(Agentsindex)
Masks(T).map = Masks(T).map∪MASK(CH)
Masks(1).map = Masks(1).map∪Masks(T).map

end for
end for

Figure 3.11 depicts the resultant paths produced from the organic masks algorithm. Here we
see very little “room” initially for the UAVs to maneuver and position themselves early in
the evolution, which results in some congestion later on akin to traditional holding patterns
as the UAVs loiter around the airports waiting for their respective turns to land. Also in
this instance, we begin to see flight dynamics that are less feasible in actual UAV platforms,
exhibiting significantly sharp turns, where in previous examples, the paths appear to be more
dynamically feasible.

30

Figure 3.11: Optimal path of UAVs in 60×60 airspace using Organic Masks

Figure 3.24 graphically shows the airspace network for the full airspace model, alongside the
five proposed network reduction approaches in this thesis. Nodes included in the airspace
network is indicated by the individual black dots, all for a 60×60 airspace. One can readily
see the significant differences between the various networks, with fewer nodes leading to
solutions for more operationally relevant airspace contexts.

3.8 Algorithm Comparison
In this section we compare the different models as they pertain to five different scenarios,
that is, five different spatial configurations of the landing zones and their numbers. Each of
these scenarios highlights the different models’ respective strengths and weaknesses, while
allowing us to identify which algorithm performs best overall. This investigation also allows
us to realize the computational trade offs of each algorithm, enabling us to make a better
choice for a given class of scenarios. The solution to the network-based model using the full
algorithm (i.e., the full airspace) is taken to be the true optimal solution, since it contains
all of the nodes and edges that can possibly be included. We compare all algorithms against
this benchmark optimal solution.

31

3.8.1 Scenario Constants
The following parameters are held constant for each of the scenarios to ensure that the focus
of the study and resulting analysis remain on the impact of the configuration of the landing
zones.

• Number of UAVs : 25 UAVs
• Size of airspace : 60×60 cells
• Landing interval: 1 time step

The following factors vary per scenario, but remain constant in the application of each algo-
rithm:

• UAV start locations: Each UAV will be assigned a specific start location
• Landing zone locations: Each landing zone is assigned a specific location
• Required # of UAVs: The number of UAV required to land at each airport

For each scenario, the presented results tables provides a comparison for the different net-
work construction algorithms. Included are the number of nodes and edges for the con-
structed airspace network to provide a measure of the state space. Computational measures
of the amount of memory (in megabytes) and runtime in seconds3, and mission performance
measures of the objective function value (Equation 2.1) and the Time Out of System (TOS)
or the time the last UAV lands (in time steps since the start of the mission) are also shown.

3.8.2 Scenario One: Group of Landing Zones
Scenario One is what we have explored thus far in the previous sections as the baseline
scenario. In this instance we have a small group of three landing zones in relatively close
proximity (i.e., they reside in the same quadrant). This configuration is meant to accentuate
the effect of the convex hull and agent-based masks algorithms. Since the landing zones are
close together we see significant node cutting using these two techniques.

3Runtime is the total execution time of the problem from generating the airspace in Matlab, GAMS reading
the .csv files and receiving a solon from CPLEX. Solve time is strictly the time required for CPLEX to solve
the network-based model, once it has been properly instantiated and passed to CPLEX. Example of solve time
compared to runtime from Scenario One include:
Full: solve = 1429 seconds ; runtime = 5282 seconds
Convex Hull: solve = 19 seconds ; runtime= 158 seconds
Multi Convex Hull: solve = 8 seconds ; runtime = 64 seconds
We can see that solve time is significantly less than the runtime in all cases. The runtime could be decreased by
interfacing directly with the solver, using data structures that stay resident in the generating language, and/or
using a compiled language.

32

Figure 3.12: Graphical Depiction of Scenario One. UAVs are located at one corner of the
airspace, and the landing zones are located in close proximity to each other in the other
corner of the airspace. The scenario involves 25 UAVs, three landing zones, and at least
eight UAVs required to arrive at each landing zone.

Table 3.2: Results of different algorithms for Scenario One

Algorithm Nodes Edges Memory Obj Value TOS Runtime (sec)

Full 356430 2664413 83938 1381 65 5282

Time Slice 96931 725253 83815 1554 81 4816

Convex Hull 42366 326537 16563 1430 70 158

Multi Convex Hull 26225 164286 5213 1430 70 64

Agent-based Mask 40437 296496 26821 1449 70 192

Organic Mask 21982 141799 18448 1442 69 110

3.8.3 Scenario Two: Dispersed Landing Zones

Scenario Two has three landing zones similar to Scenario One; however, the landing zones
are now placed in the three corners opposite the UAVs’ starting position. The takeaway from
the simulation studies of this scenario is to mitigate the node reduction advantages of the the
convex hull and mask algorithms, while highlighting the effectiveness of both the multiple
convex hull and organic mask algorithms.

33

Figure 3.13: Graphical Depiction of Scenario Two. UAVs are located at one corner of
the airspace, and three landing zones are located in each of the other far corners, which
highlights the benefits of multiple convex hull and organic masks approaches over their
respective counterparts. This scenario also involves 25 UAVs, three landing zones, and at
least eight UAVs required to arrive at each landing zone.

Table 3.3: Results of different algorithms for Scenario Two

Algorithm Nodes Edges Memory Obj Value TOS Runtime (sec)

Full 2665008 353194 83953 1381 66 5246

Time Slice 106420 725848 83837 1501 80 4543

Convex Hull 73924 574442 48931 1501 80 1875

Multi Convex Hull 21733 147572 4496 1501 80 63

Agent-based Mask 173887 1322684 62776 1455 69 3058

Organic Mask 47414 320813 20064 1437 69 123

3.8.4 Scenario Three: Overflight of Landing Zone
This scenario now has four landing zones, but one of the landing zones is directly in the path
of another. In other words, two UAV groups for these coinciding paths now must transit and
deconflict in the same restricted airspace for the two different airports. This feature is to
observe the impact of a more challenging deconfliction setting on the different algorithms,
and see if there is an effect on the ability to find an optimal solution.

34

Figure 3.14: Graphical Depiction of Scenario Three. UAVs are located at one corner of
the airspace, and the landing zones are located in close proximity to each other in the other
corner of the airspace. The fourth landing zone is placed in line with the farthest landing
zone, requiring overflight of transiting UAVs. This scenario also involves 25 UAVs, but four
landing zones, and at least six UAVs required to arrive at each landing zone.

Table 3.4: Results of different algorithms for Scenario Three

Algorithm Nodes Edges Memory Obj Value TOS Runtime (sec)

Full 342477 2584443 81462 1178 62 6420

Time Slice 92182 618291 81343 1339 76 1187

Convex Hull 41304 278721 16079 1339 77 162

Multi Convex Hull 24003 146287 5492 1339 77 67

Agent-based Mask 56746 426880 272590 1127 62 241

Organic Mask 47414 320813 20064 1437 69 105

3.8.5 Scenario Four: Airports in Each Corner
This scenario has four landing zones, such that the UAVs are initially located towards the
center of the airspace and the landing zones are located at each distant corner of the airspace.
The purpose of this scenario is two fold. First, this experiment allows all of the airports to
be equidistant from the stating position of the UAVs and from each other, which maximizes
their spatial dispersion and may lead to an improvement in performance due to earlier seg-
regation of the UAVs. Second, the UAVs are not starting in the corner and this modification
allows us to explore the flexibility of the algorithms, having parametrized not only landing
zone locations but also starting locations for UAVs.

35

Figure 3.15: Graphical Depiction of Scenario Four. UAVs are located at center of the
airspace, and the landing zones are located in each of the four corners of the airspace. This
allows airspace to be equidistant from the center of the UAVs, and tests algorithms for their
effectiveness in dispersing the swarm in separate directions. This scenario also involves 25
UAVs, but four landing zones, and at least six UAVs required to arrive at each landing zone.

Table 3.5: Results of different algorithms for Scenario Four

Algorithm Nodes Edges Memory Obj Value TOS Runtime (sec)

Full 342477 2584443 81462 693 36 4782

Time Slice 55734 350747 81328 756 40 4233

Convex Hull 40665 263491 42722 756 40 1056

Multi Convex Hull 14815 102098 3338 756 39 54

Agent-based Mask 214982 1648721 59745 761 39 3124

Organic Mask 17510 108400 10410 750 37 78

3.8.6 Scenario Five: Five Airports at Multiple Depths
This scenario introduces five landing zones that are at different depths and proximity. This
more challenging setting explores the node selection capability of the algorithms with many
landing zones at a variety of distances. The scenario also tests the network-based model’s
ability to assign UAVs to five landing zones. As such, this scenario provides the most
difficulty from both the set-up and the computational solution perspectives.

36

Figure 3.16: Graphical Depiction of Scenario Five. UAVs are located at one corner of the
airspace, and the landing zones dispersed throughout the airspace in both close proximity
to each other, but also spread to cover most of the airspace. This scenario also involves 25
UAVs, five landing zones, and at least five UAVs required to arrive at each landing zone.

Table 3.6: Results of different algorithms for Scenario Five

Algorithm Nodes Edges Memory Obj Value TOS Runtime (sec)

Full 335360 2530789 79779 1115 54 5206

Time Slice 85108 564421 79677 1175 50 4636

Convex Hull 52385 356214 29930 1175 50 256

Multi Convex Hull 24029 143148 6353 1173 59 69

Agent-based Mask 130528 986367 37529 1175 54 740

Organic Mask 48654 327009 22594 1074 56 136

3.8.7 Discussion
There are trade offs between the different algorithms. The Full algorithm has the advantage
of giving us the true optimal solution with no restrictions on node or edge choice to gain the
optimal path. However; the problem is too large for efficient computation as the airspace
and the number of UAVs increases. The multiple convex hull and organic mask algorithms
have the most node cutting power, and are able to reduce the computation enough to make
larger problems more tractable (see Figure 3.18).

This computational savings, however, comes at the expense of ensuring optimality of the
solution (with respect to the full airspace network model). For example, in the case of the
multiple convex hull algorithm, the resulting measure for the total time in system can be

37

approximately 30% greater than the Full solution, as depicted in Figure 3.22. The organic
mask, though having a solution and objective value that is closer to the Full benchmark
values, is more computationally expensive than the multiple convex hull approach by an
average of 10%, and in most cases violates the “required” constraint (c.f. Equation 2.4),
allowing fewer UAVs to land at any given landing zone than is required (see Figure 3.17).
This requirement constraint is consistently broken in the various test scenarios explored.
This violation appears to occur because the nodes that are cut do not offer enough “maneuver
room” for the UAVs; the closest landing zone takes more UAVs than the other landing zones
to alleviate this space restriction.

Figure 3.17: Depiction of landing sequence of UAVs in 3 Airports using the Organic Mask
Approach. Notice how Airport 1 has only 6 UAV land there, where the other 2 landing
zones have 9. Each landing zone is supposed to have at least 7 per. This is an example of
the organic mask algorithm relaxing the “required” constraint.

Based on the exploration provided in this thesis, the multiple convex hull approach is the best
choice for further investigation into larger airspace examples and comparison with additional
simulation models. The multiple convex hull approach consistently meets all constraints
and uses less computational power than the other examined approaches across all scenarios.
This dominant approach can be seen in the following data plots, which identify the results
and performance of the presented algorithms for the number of nodes, number of edges,
execution runtime, amount of memory required, the minimal cost function value obtained,
and the mission performance metric of total time in system (TOS) of the swarm of UAVs.

38

Figure 3.18: This graph shows the significant node reduction capability of the algorithms
with respect to the Full airspace model, with the organic mask and multi-convex hull algo-
rithms reducing the number of nodes most significantly.

Figure 3.19: This graph similarly shows the reduction of the number of edges in the network,
with the organic mask and multi-convex hull algorithms reducing the number of edges most
significantly.

39

Figure 3.20: Comparison of the amount of memory used by GAMS/CPLEX to solve each
algorithm, as measured in megabytes(Mb) is depicted in this chart. The multi-convex hull
provides the lowest memory requirement, whereas the organic mask algorithm differs with
its increased requirement (though still less than others). Of interest is that the time-slice and
full algorithms have the same memory requirement, since all elements of the airspace must
be evaluated for these two approaches.

Figure 3.21: Comparison of the minimized objective function value for each algorithm is
shown in this graph, and is measured in number of time steps. The full airspace algorithm
provides the optimal benchmark solution, where all other algorithms yield sub-optimal val-
ues in all cases. The organic mask algorithm violates the constraint (Equation 2.4) in scenar-
ios three and five, which is seen by its lower objective function values for those scenarios.

40

Figure 3.22: The mission performance metric, of interest to the decision maker, is the total
time in system (TOS) of the UAVs in the airspace, i.e., the time at which the last UAV
exits the airspace. For each algorithm, this time is recorded and contrasted against the full
algorithm, which is presumed to yield the minimum TOS value of all investigated airspace
models.

Figure 3.23: The execution time, as measured in seconds, highlights the variable amounts of
time to find a solution for the different algorithms in GAMS. Once again, we find the multi-
convex hull and organic mask algorithms to (nearly identically) find the solutions fastest
across all scenarios.

41

(a) Full Airspace (b) Time-sliced

(c) Convex hull (d) Multi-convex hull

(e) Agent-based Mask (f) Organic Mask

Figure 3.24: Illustrations of the proposed networks for a 60×60 airspace, as constructed by
the proposed network construction algorithms. Each node in the network is represented as
a single black “·”. As we use the different algorithms, we see the drastic difference in the
number of nodes representing the airspace network, thereby impacting the computational
feasibility of the optimization problem.

42

CHAPTER 4:

Model Comparison

4.1 Introduction
In this chapter we develop and discuss an Agent Based Model (ABM) as an approximation
approach to the optimization formulation presented previously in Chapters 2 and 3. We
choose to use an ABM because of its reflection of a distributed implementation, potentially
relevant to physical operational deployments of UAV systems. The distributed nature of
computation arises in the sense that each agent performs its trajectory generation individ-
ually. Each agent acts in regards to its own awareness (e.g., from sensor data) of its local
environment without requiring communication with other agents or a centralized control
node. This chapter begins with a more detailed description of each agent and the collective
ABM model.

The key objective of this study is to examine the value of distributed heuristic computation
approaches, whether for the purposes of parallel simulation experiments or for operational
implementations across many units. We note here, however, that the dichotomy between
centralized and decentralized or distributed formulations does not necessarily exactly corre-
late to the complexity or simplicity of the individual agents, respectively. For example, in
the case of UAV swarms, while the centralized solution may require substantial computa-
tion and communication resources to execute in order to coordinate the UAV swarm’s route
planning, each individual UAV may, in practice, be a simple drone only capable of following
navigation waypoints, entrusting the centralized node with significant operational oversight.
In contrast, though the agent-based model presented in this chapter may offer computational
advantages through parallel processing and simpler rule-based algorithms, the individual
UAV may now require greater levels of autonomy for local perception of neighboring units,
advanced collision avoidance capabilities, and real-time control algorithms to execute the
desired flight patterns. Exploration of these often-confounded relationships is one of the
contributions of this work.

4.2 Agent-Based Model for UAV Swarms
An ABM is a simulation in which each entity or agent in the simulation individually pro-
cesses its own surroundings. The agent then acts upon this information and causes a subse-
quent reaction in the other agents in the simulation. Each agent reacts to the environment
(including its neighboring agents) using a set of simple interaction rules. Through these in-

43

teraction rules, researchers have been able to observe complex emergent behavior and gain
understanding about the world. Examples of these emergent behaviors include construction
of complex structures (e.g., hives, termite mounds), trends in economic market systems, and
interactions of atomic particles [16]. Of particular interest in this present study is the model
of flocking described in the sequel.

4.2.1 Boid Flocking Heuristics

In 1987 Craig Reynolds published a paper on the flocking characteristics of birds and other
flock animals [1]. Reynolds’ paper specifically aimed to mimic this flocking behavior for
computer graphics and design, but is applicable to our research for UAV swarms as well as
significant other areas of research. Reynolds outlines three basic characteristic “rules” that
can be used by computer agents to mimic flocking behavior in a generic creature that he
called a “boid,” which include:

• Flock Centering: A general affinity for like creatures to be close to one another. More
specifically it is the desire for agents to move toward the center of mass of the other
agents, called the perceived center.

• Collision Avoidance: This is the opposite of flock centering, where there is a repulsive
force causing the boids to want to be apart from each other. Combined with flock
centering these two forces cause a push-pull effect that cause agents to be close to one
another without colliding.

• Velocity Matching: This force causes the boids to want to move in the same direction.
Since velocity is a vector, consisting of direction and speed, the boids having the same
vector will have the same direction and speed [1]. Combining this with the previous
two rules, the flock is now able to move in the same direction in close proximity
without colliding.

With these general rules, we can create complex flocking behavior to simulate a variety of
situations. From these basic concepts, for the work presented in this thesis, we augment
these three forces to include an additional tendency force that “pulls” the flock toward a
goal, such as a designated landing zone. Figure 4.1 depicts the calculation of these four
vectors and the resultant vector, which guides the motion of each agent at each time step.
Such calculations are performed individually based on local information, thereby enabling
distributed implementations of this agent-based model in practice.

44

Figure 4.1: Graphical depiction of flocking with vector addition described in [1] and imple-
mented in the proposed agent-based model. We see how the addition of several vectors act
upon the individual agent to determine its path in the next time step.

4.2.2 Proposed Flocking Algorithm
As Reynolds outlines [1], we can create this flocking behavior by the addition of appropri-
ate vectors. A vector for each of the behaviors that we desire (i.e., attraction, repulsion,
alignment, and tendency) is created and vector summed for each agent. The resulting vector
directs each agent where to move in the next time step. Once the resultant vector is realized,
it is normalized so that the UAVs all travel at the same speed per time step, analogous to the
constant speed assumption made in the network-based model representation in the previous
chapters.

Parker created a short tutorial online [26], providing an overview of Reynolds’ boids in the
form of pseudo-code, and Pillai [27] from the University of Michigan at Ann Arbor trans-
lated this pseudo-code into Matlab, and was generous enough to allow us to use it for our re-
search. This code was used as a starting point for the implementation of the ABM presented
herein. Some major modifications include the ability to specify multiple goal locations (i.e.,
multiple landing zones), as well as the addition of flags for regulating (e.g., appropriate in-
tervals between landings) and registering (e.g., counting and dismissing agents) the arrival
of UAV agents. Additional changes to the weights of the vectors were made as the result of
trial and error to produce consistent and desired system behavior. The modified algorithm
for updating each agent’s path at each time step is outlined in Algorithm 4.1. The specific
executable code implementing this model can be accessed at: http://faculty.nps.edu/thchung
(under software).

45

Algorithm 4.1 Algorithm for agent movement vector calculations
for all t ∈ T do

for all Boids do
drive = max(3, log(t2)) {Weight for agents’ attraction to the landing zone}
v1 = Flock Centering Vector
v2 = Collision Avoidance Vector
v3 = Velocity Matching Vector
v4 = Tendency Vector
v5 = Current Velocity Vector
vRes = (v1 + v2 +(3 v3)+drive · v4)+ v5

CurrentPosition←CurrentPosition+ vRes

end for
end for

Figure 4.2 provides a sequence of snapshots over the evolution of the mission as applied to
the baseline scenario (Scenario One). As before in the network-based model formulation, the
UAV swarm is initially located in the southwest corner of the airspace, with three destination
airports in the remaining three corners. As the scenario progresses, the UAV agents separate
by assigned landing zone and transit towards them using the flocking agent-based model
algorithm proposed in this work. The final panel depicts the arrival of the UAVs at their
respective landing zones, at which point the mission performance metric of total time in
system (TOS) is recorded.

4.3 Agent-based flocking model results
The ABM was applied to each of the five scenario discussed in Chapter 3, with the same
inputs as the network-based model. These simulation experiments provide likely trajecto-
ries for the UAVs as they transit the airspace, recognizing the nondeterministic nature of the
simulations. The resulting performances can then be compared and contrasted to the results
from our network-based models. It is important to realize that these agent-based models
do not produce a complete flight control path for the UAVs as we did in the network-based
models; rather, the rule-based control laws enable the computation of local maneuvers to be
executed by each UAV. With these agent-based model rules, we are comparing an environ-
ment where the UAVs have no centralized controller; instead, each instance of the simulation
can be thought of as an actual nondeterministic flight of the UAVs, and is treated as a sample
path in a distribution of swarm trajectories. This concept is addressed later in this section.

As before, the following simulation experiment parameters are held constant through the

46

(a) t = 5 (b) t = 15 (c) t = 20

(d) t = 30 (e) t = 50 (f) t = 60

Figure 4.2: Select frames from our ABM over the evolution of the simulation. The red
circles depict the landing zones, the blue lines are the individual agents. We can see how the
agents separate into their individual groups as they fly to their respective landing zones. We
can also see the interaction of the separate vectors, such that the agents are capable of flying
in close proximity to each other without collision and in an apparently coordinated manner.

replications, in order to highlight the differences between the agent-based model approach
and the network-based model formulations, with 500 replications of the simulation experi-
ments to provide statistical measures:

• 25 UAVs
• 60×60 airspace
• Identical initial positions for all UAVs
• Fixed landing zone locations
• 500 replications per scenario

Table 4.1 summarizes the results of the simulation experiments conducted for all five sce-
narios, including the statistics of the mission performance, that is, the total time in system
(TOS), of the agent-based flocking approach.

47

Table 4.1: Summary simulation results for each of the five scenarios with 25 UAVs oper-
ating in a 60×60 airspace. The summary statistics is for 500 replications of the simulation
experiment, including the minimum and maximum values of the total time in system (TOS)
of the UAV swarm, as well as the median, and mean times, their standard deviation, and the
total computation runtime.

Scenario Min Max Mean Median SD
1 71 285 107.13 92 35.424

2 69 110 85.18 86 5.511

3 67 285 95.41 85 26.099

4 41 275 84.77 75 36.930

5 50 165 73.39 65 23.075

(a) Scenario One Data (b) Scenario Two Data (c) Scenario Three Data

(d) Scenario Four Data (e) Scenario Five Data

Figure 4.3: Frequency histograms of the simulation data, with the horizontal axis represent-
ing total time in system, obtained by running the agent based model through each scenario
500 replications. The histograms reflect a distribution with long tails and some extreme
outliers.

We can see from the histograms of the data in Figure 4.3 that the distributions possess long
tails with a few outliers that pull their respective means toward these values. For this reason,
we use the median as a measure of central tendency for representing our results. In this
manner, the median is more robust and less sensitive to outlying values, and provide us
with a better estimate of the expected performance of the UAVs as they move through the
airspace.

Of note is that the variance of landing times in the simulation model is larger than an-
ticipated, which is likely explained by the interaction between the agents. Agents in the

48

vicinity of the landing zone repel each other, frequently preventing these agents from land-
ing. In these instances, the agents actually exhibit a holding pattern (that is, an equilibrium)
behavior around the landing zones, as the agents are unable to turn fast enough to go directly
into the landing zone. This mutual “blocking” takes a relatively long time for the agents to
resolve, causing a large range in landing time values. This problem is overcome by intro-
ducing two elements, including a time-varying attraction factor to the landing zone, where
as time increases so does the attraction to the LZ. The other is a periodic negation of the
“tendency” vector, that is, every ten time steps a repulsive force is introduced (instead of the
usual goal-attractive force) to push the agents away from the landing zone. This momen-
tary perturbation disrupts the balance of forces and enables agents to once again attempt to
sequence their landing. As the goal of this study was to introduce the application of agent-
based flocking models, these artifacts are likely due to the simple interaction rules presented.
Future explorations can enrich these interaction rules such that the variance exhibited by the
present study is minimized.

4.4 Comparison between flocking simulation and network-
based optimization algorithms

The value of the network-based approaches outlined in the previous chapters was the ability
to provide a measure of optimality of solutions. In that manner, the agent-based simulation
model presented in this chapter is consistently less efficient in the total time in system than
any of the algorithms explored previously for all investigated scenarios, as seen in Figure 4.4.
This discrepancy can be partly explained by two factors. First, the network-based model is
in discrete space and transits to diagonally adjacent nodes does not incur additional cost
as those laterally adjacent, e.g., distance cost is measured by the 1-norm. The simulation
model, being in continuous space using the Euclidean distance norm, does apply this penalty.
This difference could account for a difference in performance of approximately eight time
steps in any of the scenarios. With this handicap in mind, the minimum time in system for
the flocking algorithm approaches the performance nearly equivalent to the full network-
based model’s optimal value. Second, the simulation model more accurately accounts for
flight dynamics than does the network-based model, i.e., the agent in the simulation model
cannot turn 180 degrees in one time step where the network-based model does not have that
limitation (see Figure 2.3).

49

(a) All Control Approaches

(b) Full Algorithm and Agent Based Model Approaches

Figure 4.4: Comparison of all scenarios with performances for network-based optimization
and agent-based flocking algorithms. Simulation median is consistently higher than the
optimal values obtained with the network-based approaches.

Nevertheless, even accounting for these mitigating factors, we still observe differences in the
time to land the swarm. In Table 4.2, the distributions of the flocking algorithm simulation
results for each scenario are compared against the values from the network-based optimiza-
tion formulation using statistical tests, including the standard t-test (although the results
also hold using a Wilson-Cox nonparametric test), which highlight that their differences

50

are statistically significant. Interestingly, the minimum values are equal to or approaching
the optimal value obtained by our network-based model. This nearly optimal performance
shows that, even with simple interaction rules for governing UAV agents, there is significant
potential for the distributed flocking approach presented in this thesis.

Table 4.2: Comparison table of the flocking algorithm simulation results against the
network-based optimization models. The network-based model produced results that are
statistically significantly better than the simulation model, as evidenced by the reported p-
values using a t-test being less than 0.0001.

Method Value
Scenarios

1 2 3 4 5

Simulation
µ 107.134 85.18 95.41 84.41 73.392
σ 35.4241 5.5111 26.099 36.9 37.4899

Full
TOS 65 66 61 36 49
p-value < .0001 < .0001 < .0001 < .0001 < .0001

Time-sliced
TOS 81 80 76 40 50
p-value < .0001 < .0001 < .0001 < .0001 < .0001

Convex Hull
TOS 70 80 77 40 50
p-value < .0001 < .0001 < .0001 < .0001 < .0001

Multi Convex Hull
TOS 70 80 77 39 59
p-value < .0001 < .0001 < .0001 < .0001 < .0001

Agent-based Masks
TOS 70 69 65 39 54
p-value < .0001 < .0001 < .0001 < .0001 < .0001

Organic Masks
TOS 69 69 63 37 56
p-value < .0001 < .0001 < .0001 < .0001 < .0001

4.4.1 Flocking model vs. multiple convex hull network-based optimiza-
tion model

The results from the previous investigation of the network-based formulations highlights
the multiple convex hull approach as the recommended choice for constructing the airspace
network. In order to more thoroughly explore the (dis)advantages of the agent-based model
approach, we conduct a focused study of Scenario One using a significantly larger airspace
of 300×300 with a full complement of 50 UAVs in the swarm, allowing for five time step
intervals between landing UAVs.

51

(a) Landing Times (b) Memory

Figure 4.5: Comparison of simulation model and the multiple convex hull approach, with (a)
the landing time comparison, in time to land the swarm, and (b) the memory in megabytes
(MB) that it took the computer to produce the above answers. We can see that the multiple
convex hull approach is significantly more efficient than the distributed approach in landing
the swarm, but at the computational cost of over 1 Terabyte of computational power.

We can see in Figure 4.5(a) that the multiple convex hull approach is considerably more
efficient (in terms of UAV swarm time in system) than the agent based flocking model for
this specific airspace and scenario. In other words, the network-based optimization approach
is nearly 20% lower in TOS as compared to the agent-based model’s minimum value, and
exhibits a nearly 35% advantage over the agent-based model’s median performance.

However, the memory comparison provides a very different picture. As seen in Figure 4.5(b),
we observe that the computational cost of the agent-based model scales linearly as the prob-
lem gets larger. However, the network-based optimization model as formulated scales ex-
ponentially, becoming more and more difficult to solve larger problems. The flocking algo-
rithm (which offers a distributed implementation that would make the computational cost
savings more extensive) requires only a fraction of the computation power (in this example,
a difference of over 1 Terabyte) when compared to the centralized formulation.

This example shows the power of the distributed solution when we increase the breath and
depth of a problem. A distributed, agent-based approach is able to better handle a larger
more complex (and potentially more operationally relevant) environment than the central-
ized approach. Though this trade off may result in 20-40% loss in the time it takes to land
the UAV swarm, awareness and knowledge of this trade off can inform areas for improving
such distributed algorithm approaches to increase their efficiency.

4.5 Discussion
This chapter investigated an agent-based model using flocking algorithms that presents a
distributed alternative to the centralized, computationally expensive approaches presented in

52

previous chapters. The agent-based heuristic approach is more computationally feasible for
larger problem and easier to deploy for expeditionary environments, where computational
power and/or the computation time may not readily available. However, we see that the
distributed solutions may be far from the optimal solution, and as such may be less useful to
the decision-maker.

Specifically for this problem of optimizing the landing of UAV swarms, an observation in the
flocking algorithm context is that the individual agents do not start to separate and sequence
prior to arriving at the landing zone, in contrast with the network-based models, where the
agents anticipate their sequence for landing well before they arrive at the LZ. The agent-
based model, being a reactive and myopic model, is unable to provide such insight and plan
for extended time horizons.

An additional limitation of the agent-based model presented in this chapter is that the agents
are arbitrarily and/or manually assigned to one of the airports. This real-time assignment is
not the case in the network-based model where optimal assignments are implicitly part of
the computation (captured by constraints on required number of UAVs per landing zone).
The addition of an assignment algorithm into the simple flocking model could add increased
complexity into the model, although one-shot linear assignment implementations can be
solved quite efficiently. In the absence of such predefined assignments of landing zones,
respecting allocation requirements of agents to different landing zones would be difficult
(e.g., agents would potentially tend to land at the same landing zones due to the Flock
Centering behavior)Appropriate tuning of the weights governing the flocking behaviors,
e.g., the Flock Centering vectors, may be modified to enable sufficient segregation of the
UAV agents into the various landing zones, but is reserved for future study.

Despite these limitations, however, the execution of the agent-based model simulations are
computationally inexpensive and highlight their potential significant benefit to exploring
these optimization problem contexts. The memory used for every run was within 4 Gb
and only required less than nine minutes for the completion of 500 runs! This memory
usage is merely an eighth of the available resources, and further highlights the fact that
high-performance computing solutions are not always necessary. Further, keeping in mind
the fact that the time spent conducting the simulation runs assumed running all the UAVs’
flocking behavior computations simultaneously, in actual distributed UAV operations, the
computational advantage would be more pronounced. Spare computational capabilities of
the UAV could be better utilized for, e.g., sensing and perception subsystems, which may
make the agent-based heuristic models attractive when considering the UAV system. The
trade off is that in order to create agents that are able to implement a distributed solution, the

53

agents themselves may become more complex and expensive by requiring such subsystems,
whereas the centralized solution requires only simple waypoint execution from the UAV
platforms.

Though the results for the agent-based flocking algorithm were far from an optimal solution,
they are simply achieved and easily interpreted. The value of the network-based model in
this instance is to provide a benchmark against which we can compare our approximation
approaches. Recognizing that there are many different ways to produce flocking behaviors,
we explored one such construction as presented in this chapter.

54

CHAPTER 5:

Conclusion and Future Work

5.1 Conclusions
We have been able to produce transit paths for UAV swarms that provide both collision
avoidance and efficient routing through airspace. This is done through both the formulation
and use of a centralized network-based model as well as a distributed, agent-based heuris-
tic model for flocking. Both models provide deconfliction and routing through the airspace
to get the UAVs to one or more landing zones in a relatively efficient manner. The mea-
sure of mission performance in these types of operations is the total time in system (TOS),
representing the time when the last aircraft lands, which both models seek to minimize.

First we construct the optimization problem as a single commodity, network flow formula-
tion, with side constraints which accounts for the number of UAVs, deconfliction of airspace,
and the ultimate and timely arrival of UAVs at landing zones. Given the computational ex-
pense of constructing an operationally relevant network, we investigate and propose several
algorithmic methods to reduce the number of elements (nodes and edges) in the network.
These methods leverage notions of reachable sets and easily computed convex hulls to dra-
matically decrease the problem space. Further, we explore the use of agent-based simula-
tion as another means for reducing the number of network nodes and edges. Computational
routines in GAMS/CPLEX are implemented and applied to find optimal solutions for these
respective approaches, and thorough comparison studies highlight a recommended approach
of using multiple convex hulls to cheaply inform the network construction.

To enhance the relevance and contribution of this work, we also constructed a purely agent-
based simulation approach, using well-known flocking algorithms to represent simple agent
interaction rules to govern UAV behaviors. We found that the agent-based model imple-
mented for this study are limited in producing (near) optimal solutions, given a number of
reasons including the myopic nature of the agent behaviors. However, the benefit of the
investigated flocking algorithm was to highlight the extreme computational advantages in
producing approximate (though occasionally severely sub-optimal) solutions to the UAV
swarm landing problem.

The advantage of the centralized network-based model is that, though computationally ex-
pensive and solved offline, once done so, the computed UAV routes are simple to execute
since the paths can be sent to the individual UAVs as waypoints for them to follow. This

55

would make a good solution for disposable UAV systems, where the expensive component
is the computational hardware of the operational planning system (e.g., at the base station)
and the UAVs themselves are cheap. Such a capability is readily available, i.e., it requires
that the UAV have a simple auto pilot and interface software and does not require onboard
sensing nor coordination among assets. The disadvantage of this approach is that currently
its application is not computationally feasible for large, operationally relevant scenarios (i.e.,
involves a prohibitive number of node/edge interactions, and takes hours or longer to solve).

The distributed, agent-based approach is considerably more adaptable and less computation-
ally prohibitive than the centralized solution. This increased flexibility and responsiveness
may, however, come at the cost of increasing the complexity of the UAV agents themselves.
In other words, the flocking algorithm now relies on the individual UAV’s ability to observe
its environment, orient to that environment, decide and act accordingly (i.e., perform the
OODA loop). The UAV is now responsible for this OODA loop, requiring greater auton-
omy than is presently fielded in operational systems. The other trade off is that the UAV
swarm, on average, will achieve sub-optimal performance using the agent-based approach
relative to the centralized network-based model, as the UAVs will be reactive (rather than
deliberative), that is, will have little or no considerations for overcoming local minima to
achieve optimality.

The network-based optimization formulation for this problem of landing large numbers of
UAVs at multiple landing zones is not computationally solvable without the use of high
power computing resources. Though the unconstrained airspace, or full, problem is able to
produce the best solutions (since there are no restrictions on possible UAV routes), its use
requires the trade off of only applying to smaller airspace sizes and less relevant problems.
The use of agent-based models and other techniques enable the use of the network-based
formulation for larger problems by restricting the problem and “cutting” the airspace into
only a portion of what was originally considered. These techniques used to restrict the prob-
lem make the optimization more computationally attractive, but at the cost of a sub-optimal
solution. Thus combining the use of agent-based models or simulation with optimization
models is able to make this problem more tractable and solutions readily available for fur-
ther use. This synergy is an example where the combination of two disciplines in operations
research can produce better analysis and results, solving problems that previously may not
have been possible separately.

5.2 Discussion
The melding of both simulation and optimization can produce results that are both tractable
and more consistently closer to optimal than simulation alone. Techniques such as agent-

56

based simulation can be used in traditional optimization models to gain insight into systems
and to give the modeler a localized area for finding the solution. In this thesis, we use agent
based models to make otherwise computationally intractable problems tractable, while still
maintaining a near optimal solution.

Similarly, formulation as an optimization problem gives the simulation modeler analytic
bounds on the behavior that is desired, and a benchmark for the measure of performance
for a simulation. This benchmark is important for transitioning or extrapolating insights
attained from simulation to real and operational systems

It is important to realize that this research is the ground floor of a much larger effort. Some
of the techniques developed can be used, not only for the paths of individual UAVs, but
for providing a basis for the use of heuristic and exact optimization solution methodologies
together. In this example of UAV swarms, a network-based model can be formulated and
used for routing and target assignment of squads and sub-swarms, and heuristic models can
used for the micro-level control of collision avoidance and flocking, thereby providing a
more defined balance between distributed and centralized control.

This thesis further provides important insight into the level of command and control that is
required in swarming systems. In the agent-based model we can see that the agents’ col-
lective performance is relatively diminished, since the agents are not provided with a “big
picture plan” on how to achieve there goal; they act purely on local and immediate informa-
tion. The use of agents in the network-based model produced results that were sub-optimal
but closer to the optimal solution than the purely distributed solution. As such, network
optimization models should be used for higher level optimization tasks, for example, target
or landing zone assignment, general routing, and large scale airspace deconfliction, leaving
the low level control for collision avoidance and flocking to the individual UAV. The most
efficient use of resources, both computationally and temporally, may be to have a combina-
tion of centralized and distributed optimization and control approaches, perhaps similar to
current military hierarchy and command structure in place today.

5.3 Avenues for Future Research
There are several avenues for future research. The network-based model can be expanded
and explored in several ways. First, the upper values of the edges can be extended to account
for bounds greater than one. By doing so, the network can be expanded to serve as an
assignment and macro-routing problem, where the nodes are farther apart and the edges
allow squads of 3− 50 UAVs to traverse them, allowing for higher level planning that can
provide rough macro control of the UAVs.The network could also be used to assign UAVs

57

to a specific landing time or window.Another area of expansion is the implementation of
a variable time step or variable edge capacities, such that the network behaves differently
depending on where in the transit the UAVs are. For example, if the UAVs are en route, then
the upper limit on the edge could be 15-20 UAVs, where as they get closer to the landing
zones, the time step could become shorter and capacity limits on each edge could tighten.

The network-based model can also be expanded to use the actual flocking rules in the agent-
based model to cut the nodes and make the mask. These rules are more complex than the
simple particle rules that were used in our agent-based mask algorithms. Thus, the flocking
simulation could be run 10 -50 times over the same set of masks using flocking rules, thereby
capturing a better representation of the actual nodes that would most likely be used. Also,
if a future implementation could record the adjacencies produced by this simulation, then
we could “grow” the network vice cutting the original (full airspace) network, possibly
providing a better solution to the problem.

The agent-based model can be improved in many areas, including the addition of better or
aircraft-relevant flocking rules to improve the agent interactions, perhaps by optimizing the
weights on the flocking vectors for more consistent and predictable behavior.

Finally, an area of promising future research is in the explicit integration of the central-
ized network-based model and the agent-based models together. The network-based model
could be used to provide coarse guidance and control, while having the agents provide col-
lision avoidance and flocking behavior. This hybrid approach would involve the passing
of coordinates provided from the network-based model to an agent-based simulation or to
actual UAVs through a centralized ground controller, which could be directly translated into
currently operational UAV systems.

58

REFERENCES

[1] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM

SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34, Aug. 1987. [Online].
Available: http://portal.acm.org/citation.cfm?doid=37402.37406

[2] J. Arquilla, “Swarming and the Future of Conflict,” DTIC Document, Tech.
Rep., 2000. [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord\&
metadataPrefix=html\&identifier=ADA384989

[3] S. Edwards, “Swarming and the Future of Warfare,” RAND Corporation, Santa
Monica, CA 90407-2138, Tech. Rep., 2005. [Online]. Available: http://oai.dtic.mil/
oai/oai?verb=getRecord\&metadataPrefix=html\&identifier=ADA434577

[4] B. Clough, “UAV Swarming? So What are Those Swarms, What are the Implications,
and How Do We Handle Them?” DTIC Document, Tech. Rep., 2002. [Online].
Available: http://oai.dtic.mil/oai/oai?verb=getRecord\&metadataPrefix=html\
&identifier=ADA405548

[5] S. Griffith, “The Art of War,” Trans.)(London, Oxford University Press, 1963) p,
1994. [Online]. Available: http://www.stanford.edu/class/polisci211z/1.1/SunTzu.pdf

[6] W. Hennigan, “New drone has no pilot anywhere, so who’s accountable?” 2012.

[7] W. D. Shannon, “Future Trends in Unmanned Aviation and Weapons,” 2012.

[8] M. D. Peterson, D. J. Bertsimas, and a. R. Odoni, “Decomposition Algorithms for Ana-
lyzing Transient Phenomena in Multiclass Queueing Networks in Air Transportation,”
Operations Research, vol. 43, no. 6, pp. 995–1011, Nov. 1995.

[9] M. A. Bolender and G. L. Slater, “Evaluation of scheduling methods for multiple
runways,” journal of aircraft, vol. 37, no. 3, pp. 410–416, Oct. 2000. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/21996520

[10] A. P. Saraf and G. L. Slater, “Optimal Dynamic Scheduling of Aircraft Arrivals at
Congested Airports,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 1, pp.
53–65, Jan. 2008.

[11] J. Boesel, “An air traffic simulation model that predicts and prevents excess
demand,” The MITRE Corporation: Center for Advanced System Development
(CAASD), McLean, Virginia 22102, Tech. Rep., 2003. [Online]. Available: http:
//www.mitre.org/work/tech\ papers/tech\ papers\ 03/boesel\ ats/boesel\ ats.pdf

59

[12] P. Brooker, “Simple Models for Airport Delays During Transition to a Trajectory-
Based Air Traffic System,” Journal of Navigation, vol. 62, no. 04, p. 555, Oct. 2009.

[13] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Appli-

cations, M. Peterson, Ed. New Jersey: Prentice Hall, 1993, vol. 1.

[14] P. Dell’Olmo, “A new hierarchical architecture for Air Traffic Management:
Optimisation of airway capacity in a Free Flight scenario,” European Journal

of Operational Research, vol. 144, no. 1, pp. 179–193, Jan. 2003. [On-
line]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0377221701003940http:
//www.sciencedirect.com/science/article/pii/S0377221701003940

[15] K. Artiouchine, P. Baptiste, and J. Mattioli, “The K King Problem, an Abstract Model
for Computing Aircraft Landing Trajectories: On Modeling a Dynamic Hybrid System
with Constraints,” INFORMS Journal on Computing, vol. 20, no. 2, pp. 222–233, Sep.
2007.

[16] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds. MIT Press, 1997. [Online]. Available: http://books.google.com/books?
hl=en\&lr=\&id=K8P1rX8T4kYC\&pgis=1

[17] S. Conway, “An Agent-Based Model for Analyzing Control Policies and the Dynamic
Service-Time Performance of a Capacity-Constrained Air Traffic Management Facil-
ity.” ICAS, 2006, pp. 1–8.

[18] R. Olfati-Saber and R. Murray, “Flocking with obstacle avoidance: Cooperation
with limited communication in mobile networks,” in Decision and Control, 2003.

Proceedings. 42nd IEEE Conference on, vol. 2. IEEE, 2003, pp. 2022–2028.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1272912http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=1272912

[19] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,”
Automatic Control, IEEE Transactions on, vol. 51, no. 3, pp. 401–420, Mar. 2006.

[20] H. Yu, J. Jian, and Y. Shen, “Flocking Control of a Group of Agents Using
a Fuzzy-Logic-Based Attractive/Repulsive Function,” Int’l J. of Communications,

Network and System Sciences, vol. 03, no. 06, pp. 569–577, 2010. [Online]. Available:
http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/ijcns.2010.36076

[21] G. G. Brown and R. F. Dell, “Formulating integer linear programs: A rogues’
gallery,” INFORMS Transactions on Education, vol. 7, no. 2, pp. 153–159,

60

January 2007. [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord\&
metadataPrefix=html\&identifier=ADA487382

[22] R. Rosenthal, GAMS - A User’s Guide, GAMS Development Corporation, Washington,
DC, USA, January 2012.

[23] Unkown, CPLEX 12, GAMS Development Corporation,
http://www.gams.com/dd/docs/solvers/cplex.pdf.

[24] S. Boyd and L. Vandenberghe, Convex Oprtimization, 1st ed. Cambridge, UK: Cam-
bridge Univ Press, 2004.

[25] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars, Computational Ge-

ometry: Algorithms and Applications, 3rd ed. New York, New York: Springer, 2000.

[26] C. Parker, “Boids Pseudocode,” vol. 1, 2001. [Online]. Avail-
able: http://www.vergenet.net/∼conrad/boids/pseudocode.htmlhttp://scholar.google.
com/scholar?hl=en\&btnG=Search\&q=intitle:Boids+Pseudocode\#0

[27] S. Pillai, “conradboid.m,” 1996, flocking code in Matlab, borrowed and modified from
the authors original.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Directory, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Marine Corps Tactical System Support Activity (Attn: Operations Officer)
Camp Pendleton, California

6. Director, Studies and Analysis Division, MCCDC, Code C45
Quantico, Virginia

63

